Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Evolution History of Fe-S Cluster A-Type Assembly Protein Reveals Multiple Gene Duplication Events and Essential Protein Motifs.

Identifieur interne : 000027 ( Main/Exploration ); précédent : 000026; suivant : 000028

The Evolution History of Fe-S Cluster A-Type Assembly Protein Reveals Multiple Gene Duplication Events and Essential Protein Motifs.

Auteurs : Hui-Meng Lu [République populaire de Chine] ; Jing-Di Li [République populaire de Chine] ; Yu-Dan Zhang [République populaire de Chine] ; Xiao-Li Lu [République populaire de Chine] ; Chang Xu [République populaire de Chine] ; Yuan Huang [République populaire de Chine] ; Michael Gribskov

Source :

RBID : pubmed:32108236

Abstract

Iron-sulfur (Fe-S) clusters play important roles in electron transfer, metabolic and biosynthetic reactions, and the regulation of gene expression. Understanding the biogenesis of Fe-S clusters is therefore relevant to many fields. In the complex process of Fe-S protein formation, the A-type assembly protein (ATAP) family, which consists of several subfamilies, plays an essential role in Fe-S cluster formation and transfer and is highly conserved across the tree of life. However, the taxonomic distribution, motif compositions, and the evolutionary history of the ATAP subfamilies are not well understood. To address these problems, our study investigated the taxonomic distribution of 321 species from a broad cross-section of taxa. Then, we identified common and specific motifs in multiple ATAP subfamilies to explain the functional conservation and nonredundancy of the ATAPs, and a novel, essential motif was found in Eumetazoa IscA1, which has a newly found magnetic function. Finally, we used phylogenetic analytical methods to reconstruct the evolution history of this family. Our results show that two types of ErpA proteins (nonproteobacteria-type ErpA1 and proteobacteria-type ErpA2) exist in bacteria. The ATAP family, consisting of seven subfamilies, can be further classified into two types of ATAPs. Type-I ATAPs include IscA, SufA, HesB, ErpA1, and IscA1, with an ErpA1-like gene as their last common ancestor, whereas type-II ATAPs consist of ErpA2 and IscA2, duplicated from an ErpA2-like gene. During the mitochondrial endosymbiosis, IscA became IscA1 in eukaryotes and ErpA2 became IscA2 in eukaryotes, respectively.

DOI: 10.1093/gbe/evaa038
PubMed: 32108236
PubMed Central: PMC7144353


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Evolution History of Fe-S Cluster A-Type Assembly Protein Reveals Multiple Gene Duplication Events and Essential Protein Motifs.</title>
<author>
<name sortKey="Lu, Hui Meng" sort="Lu, Hui Meng" uniqKey="Lu H" first="Hui-Meng" last="Lu">Hui-Meng Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Jing Di" sort="Li, Jing Di" uniqKey="Li J" first="Jing-Di" last="Li">Jing-Di Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yu Dan" sort="Zhang, Yu Dan" uniqKey="Zhang Y" first="Yu-Dan" last="Zhang">Yu-Dan Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lu, Xiao Li" sort="Lu, Xiao Li" uniqKey="Lu X" first="Xiao-Li" last="Lu">Xiao-Li Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Chang" sort="Xu, Chang" uniqKey="Xu C" first="Chang" last="Xu">Chang Xu</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huang, Yuan" sort="Huang, Yuan" uniqKey="Huang Y" first="Yuan" last="Huang">Yuan Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gribskov, Michael" sort="Gribskov, Michael" uniqKey="Gribskov M" first="Michael" last="Gribskov">Michael Gribskov</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, Purdue University.</nlm:affiliation>
<wicri:noCountry code="subField">Purdue University</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Computer Science, Purdue University.</nlm:affiliation>
<wicri:noCountry code="subField">Purdue University</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32108236</idno>
<idno type="pmid">32108236</idno>
<idno type="doi">10.1093/gbe/evaa038</idno>
<idno type="pmc">PMC7144353</idno>
<idno type="wicri:Area/Main/Corpus">000140</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000140</idno>
<idno type="wicri:Area/Main/Curation">000140</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000140</idno>
<idno type="wicri:Area/Main/Exploration">000140</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Evolution History of Fe-S Cluster A-Type Assembly Protein Reveals Multiple Gene Duplication Events and Essential Protein Motifs.</title>
<author>
<name sortKey="Lu, Hui Meng" sort="Lu, Hui Meng" uniqKey="Lu H" first="Hui-Meng" last="Lu">Hui-Meng Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Jing Di" sort="Li, Jing Di" uniqKey="Li J" first="Jing-Di" last="Li">Jing-Di Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yu Dan" sort="Zhang, Yu Dan" uniqKey="Zhang Y" first="Yu-Dan" last="Zhang">Yu-Dan Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lu, Xiao Li" sort="Lu, Xiao Li" uniqKey="Lu X" first="Xiao-Li" last="Lu">Xiao-Li Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Chang" sort="Xu, Chang" uniqKey="Xu C" first="Chang" last="Xu">Chang Xu</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huang, Yuan" sort="Huang, Yuan" uniqKey="Huang Y" first="Yuan" last="Huang">Yuan Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gribskov, Michael" sort="Gribskov, Michael" uniqKey="Gribskov M" first="Michael" last="Gribskov">Michael Gribskov</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, Purdue University.</nlm:affiliation>
<wicri:noCountry code="subField">Purdue University</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Computer Science, Purdue University.</nlm:affiliation>
<wicri:noCountry code="subField">Purdue University</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Genome biology and evolution</title>
<idno type="eISSN">1759-6653</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Iron-sulfur (Fe-S) clusters play important roles in electron transfer, metabolic and biosynthetic reactions, and the regulation of gene expression. Understanding the biogenesis of Fe-S clusters is therefore relevant to many fields. In the complex process of Fe-S protein formation, the A-type assembly protein (ATAP) family, which consists of several subfamilies, plays an essential role in Fe-S cluster formation and transfer and is highly conserved across the tree of life. However, the taxonomic distribution, motif compositions, and the evolutionary history of the ATAP subfamilies are not well understood. To address these problems, our study investigated the taxonomic distribution of 321 species from a broad cross-section of taxa. Then, we identified common and specific motifs in multiple ATAP subfamilies to explain the functional conservation and nonredundancy of the ATAPs, and a novel, essential motif was found in Eumetazoa IscA1, which has a newly found magnetic function. Finally, we used phylogenetic analytical methods to reconstruct the evolution history of this family. Our results show that two types of ErpA proteins (nonproteobacteria-type ErpA1 and proteobacteria-type ErpA2) exist in bacteria. The ATAP family, consisting of seven subfamilies, can be further classified into two types of ATAPs. Type-I ATAPs include IscA, SufA, HesB, ErpA1, and IscA1, with an ErpA1-like gene as their last common ancestor, whereas type-II ATAPs consist of ErpA2 and IscA2, duplicated from an ErpA2-like gene. During the mitochondrial endosymbiosis, IscA became IscA1 in eukaryotes and ErpA2 became IscA2 in eukaryotes, respectively.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32108236</PMID>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1759-6653</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2020</Year>
<Month>03</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Genome biology and evolution</Title>
<ISOAbbreviation>Genome Biol Evol</ISOAbbreviation>
</Journal>
<ArticleTitle>The Evolution History of Fe-S Cluster A-Type Assembly Protein Reveals Multiple Gene Duplication Events and Essential Protein Motifs.</ArticleTitle>
<Pagination>
<MedlinePgn>160-173</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/gbe/evaa038</ELocationID>
<Abstract>
<AbstractText>Iron-sulfur (Fe-S) clusters play important roles in electron transfer, metabolic and biosynthetic reactions, and the regulation of gene expression. Understanding the biogenesis of Fe-S clusters is therefore relevant to many fields. In the complex process of Fe-S protein formation, the A-type assembly protein (ATAP) family, which consists of several subfamilies, plays an essential role in Fe-S cluster formation and transfer and is highly conserved across the tree of life. However, the taxonomic distribution, motif compositions, and the evolutionary history of the ATAP subfamilies are not well understood. To address these problems, our study investigated the taxonomic distribution of 321 species from a broad cross-section of taxa. Then, we identified common and specific motifs in multiple ATAP subfamilies to explain the functional conservation and nonredundancy of the ATAPs, and a novel, essential motif was found in Eumetazoa IscA1, which has a newly found magnetic function. Finally, we used phylogenetic analytical methods to reconstruct the evolution history of this family. Our results show that two types of ErpA proteins (nonproteobacteria-type ErpA1 and proteobacteria-type ErpA2) exist in bacteria. The ATAP family, consisting of seven subfamilies, can be further classified into two types of ATAPs. Type-I ATAPs include IscA, SufA, HesB, ErpA1, and IscA1, with an ErpA1-like gene as their last common ancestor, whereas type-II ATAPs consist of ErpA2 and IscA2, duplicated from an ErpA2-like gene. During the mitochondrial endosymbiosis, IscA became IscA1 in eukaryotes and ErpA2 became IscA2 in eukaryotes, respectively.</AbstractText>
<CopyrightInformation>© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Hui-Meng</ForeName>
<Initials>HM</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Jing-Di</ForeName>
<Initials>JD</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yu-Dan</ForeName>
<Initials>YD</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Xiao-Li</ForeName>
<Initials>XL</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Chang</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Yuan</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gribskov</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Purdue University.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Computer Science, Purdue University.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>figshare</DataBankName>
<AccessionNumberList>
<AccessionNumber>10.6084/m9.figshare.11847183</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Genome Biol Evol</MedlineTA>
<NlmUniqueID>101509707</NlmUniqueID>
<ISSNLinking>1759-6653</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Fe–S cluster A-type assembly protein</Keyword>
<Keyword MajorTopicYN="Y">gene duplication</Keyword>
<Keyword MajorTopicYN="Y">protein family evolution</Keyword>
<Keyword MajorTopicYN="Y">protein motif</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32108236</ArticleId>
<ArticleId IdType="pii">5762613</ArticleId>
<ArticleId IdType="doi">10.1093/gbe/evaa038</ArticleId>
<ArticleId IdType="pmc">PMC7144353</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Microbiol Biotechnol. 2011 Feb;21(2):124-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21364293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2005 Dec;26(16):1781-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16222654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Jan 8;47(D1):D506-D515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30395287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2007 Mar;6(3):495-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17259550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2017 Jun;14(6):587-589</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28481363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2015;69:505-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26488283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Dec 1;28(23):3150-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23060610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Sep 14;537(7620):320-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27629638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1998;14(1):48-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9520501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):599-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10639125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Jul 22;269(29):18723-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8034623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chembiochem. 2008 Oct 13;9(15):2355-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18798211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2019 Oct;574(7780):679-685</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31645766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2006 Jun 30;360(1):117-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16730357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Graph. 1996 Feb;14(1):33-8, 27-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8744570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Nov 10;290(5494):1151-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11073452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dalton Trans. 2013 Mar 7;42(9):3107-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23292141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2006;22:457-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16824008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1992 Feb;231(3):494-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1538703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2004 Oct;20(10):461-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15363896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2004 Aug 2;1700(2):179-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15262227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2018 Dec 17;46(6):1593-1603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30381339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 May 16;278(20):17993-8001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12637501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jul;41(12):e121</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23598997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2008 Mar;28(5):1851-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18086897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2016 Jun;38:45-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27061491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Microb Physiol. 2005;50:41-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16221578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2005 Nov;10(7):713-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16211402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2000 Feb;5(1):2-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10766431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7584402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jan 1;33(Database issue):D501-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15608248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan;41(Database issue):D344-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23161676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Mar;1827(3):455-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23298813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 May;138(1):161-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15888686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2008 Jan 15;409(2):535-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17941825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2005 Jan;187(2):405-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15629911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 May 26;275(21):15955-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10748136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2000 Aug;25(8):352-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10916152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2004 Oct;9(7):828-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15278785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 May;5(5):e1000497</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19478995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2008;77:669-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18366324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jun 22;276(25):22604-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11319236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2008 Mar;72(1):110-25, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18322036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Jan 1;23(1):127-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17050570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2004 Nov 09;4:44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15535883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2008 Dec;36(Pt 6):1112-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19021507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Dec 2;286(48):41205-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21987576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 May 11;8:15124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28492233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Mar 14;9:336</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29662496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 May 1;25(9):1189-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19151095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Nov 30;276(48):44521-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11577100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6203-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24733926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2018 Feb 1;35(2):518-522</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29077904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2005;74:247-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15952888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2015 Jan;32(1):268-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25371430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci China Life Sci. 2016 Dec;59(12):1324-1331</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27614751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 1;25(15):1972-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2018 May 18;293(20):7689-7702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29626095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13626-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17698959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2004 Mar;2(3):E55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15024414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2000 Jul 7;476(3):134-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10913600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem Mol Biol. 2004 Jan 31;37(1):35-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14761301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Mater. 2016 Feb;15(2):217-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26569474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Jul;10(7):324-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15951221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2009 Jul;26(7):1641-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19458158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2014 Nov 19;136(46):16240-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25347204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2012 Apr;23(7):1157-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22323289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2000 Apr;5(2):167-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10819462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D286-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26582926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2008 Jun 15;474(2):226-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18191630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oxid Med Cell Longev. 2017;2017:3647657</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29445445</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Gribskov, Michael" sort="Gribskov, Michael" uniqKey="Gribskov M" first="Michael" last="Gribskov">Michael Gribskov</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Lu, Hui Meng" sort="Lu, Hui Meng" uniqKey="Lu H" first="Hui-Meng" last="Lu">Hui-Meng Lu</name>
</noRegion>
<name sortKey="Huang, Yuan" sort="Huang, Yuan" uniqKey="Huang Y" first="Yuan" last="Huang">Yuan Huang</name>
<name sortKey="Li, Jing Di" sort="Li, Jing Di" uniqKey="Li J" first="Jing-Di" last="Li">Jing-Di Li</name>
<name sortKey="Lu, Xiao Li" sort="Lu, Xiao Li" uniqKey="Lu X" first="Xiao-Li" last="Lu">Xiao-Li Lu</name>
<name sortKey="Xu, Chang" sort="Xu, Chang" uniqKey="Xu C" first="Chang" last="Xu">Chang Xu</name>
<name sortKey="Zhang, Yu Dan" sort="Zhang, Yu Dan" uniqKey="Zhang Y" first="Yu-Dan" last="Zhang">Yu-Dan Zhang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000027 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000027 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32108236
   |texte=   The Evolution History of Fe-S Cluster A-Type Assembly Protein Reveals Multiple Gene Duplication Events and Essential Protein Motifs.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32108236" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020